1,683 research outputs found

    Increasing the coherence time of Bose-Einstein-condensate interferometers with optical control of dynamics

    Get PDF
    Atom interferometers using Bose-Einstein condensate that is confined in a waveguide and manipulated by optical pulses have been limited by their short coherence times. We present a theoretical model that offers a physically simple explanation for the loss of contrast and propose the method for increasing the fringe contrast by recombining the atoms at a different time. A simple, quantitatively accurate, analytical expression for the optimized recombination time is presented and used to place limits on the physical parameters for which the contrast may be recovered.Comment: 34 Pages, 8 Figure

    Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas

    Full text link
    We have observed the superfluid phase transition in a strongly interacting Fermi gas via high-precision measurements of the local compressibility, density and pressure down to near-zero entropy. Our data completely determine the universal thermodynamics of strongly interacting fermions without any fit or external thermometer. The onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat capacity. In particular, the heat capacity displays a characteristic lambda-like feature at the critical temperature of Tc/TF=0.167(13)T_c/T_F = 0.167(13). This is the first clear thermodynamic signature of the superfluid transition in a spin-balanced atomic Fermi gas. Our measurements provide a benchmark for many-body theories on strongly interacting fermions, relevant for problems ranging from high-temperature superconductivity to the equation of state of neutron stars.Comment: 11 pages, 8 figure

    Flow Equation for Supersymmetric Quantum Mechanics

    Full text link
    We study supersymmetric quantum mechanics with the functional RG formulated in terms of an exact and manifestly off-shell supersymmetric flow equation for the effective action. We solve the flow equation nonperturbatively in a systematic super-covariant derivative expansion and concentrate on systems with unbroken supersymmetry. Already at next-to-leading order, the energy of the first excited state for convex potentials is accurately determined within a 1% error for a wide range of couplings including deeply nonperturbative regimes.Comment: 24 pages, 8 figures, references added, typos correcte

    Anomalous Stability of nu=1 Bilayer Quantum Hall State

    Full text link
    We have studied the fractional and integer quantum Hall (QH) effects in a high-mobility double-layer two-dimensional electron system. We have compared the "stability" of the QH state in balanced and unbalanced double quantum wells. The behavior of the n=1 QH state is found to be strikingly different from all others. It is anomalously stable, though all other states decay, as the electron density is made unbalanced between the two quantum wells. We interpret the peculiar features of the nu=1 state as the consequences of the interlayer quantum coherence developed spontaneously on the basis of the composite-boson picture.Comment: 5 pages, 6 figure
    corecore